
VA FILEMAN
SQL INTERFACE (SQLI)

VENDOR GUIDE
DRAFT

Patch DI*21.0*38

Fall, 1997

Department of Veterans Affairs
VISTA Software Development

OpenVISTA Product Line

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT i

Table of Contents

Orientation...iii

Introduction.. v

1. Building an SQLI Mapper.. 1-1

Information Provided by SQLI ... 1-2

Organization of SQLI Information... 1-2

SQLI Entity - Relationship Diagram ... 1-3

Guidelines for SQLI Mappers... 1-4

VA Programming Standards and Conventions .. 1-4

Populating the SQLI_KEY_WORD File ... 1-4

Data Dictionary Synchronization ... 1-4

Kernel Compatibility ... 1-5

2. Parsing the SQLI Projection... 2-1

About the Examples in this Chapter .. 2-1

Using the {B}, {E}, {I}, {K}, and {V} Placeholders ... 2-1

Example File ... 2-3

Starting Point: SQLI_SCHEMA File ... 2-4

To Find the Projected Table for a File ... 2-4

Processing Tables.. 2-4

About Table Elements... 2-5

Processing Columns .. 2-6

To Find a Table Element’s Column Entry ... 2-6

Ien Columns .. 2-7

To Find the Primary Key for a Given Table .. 2-7

Primary Key for a Projected Subfile ... 2-8

$ORDERING to Loop Through a File’s Data Entries 2-9

Assembling Record Locations ... 2-10

Retrieving Column Values.. 2-11

Column Value Conversions .. 2-12

Domain Conversions (Base to Internal) ... 2-12

Output Format Conversions (Base to External) .. 2-12

Foreign Keys ... 2-13

3. VA FileMan and SQL... 3-1

Table of Contents

ii VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

Mapping VA FileMan Fields to SQL Data Types.. 3-3

VA FileMan Indexes ... 3-7

4. File Reference .. 4-1

SQLI_SCHEMA File ... 4-2

SQLI_KEY_WORD File .. 4-3

SQLI_DATA_TYPE File ... 4-4

SQLI_DOMAIN File ... 4-5

SQLI_KEY_FORMAT File.. 4-7

SQLI_OUTPUT_FORMAT File.. 4-8

SQLI_TABLE File... 4-9

SQLI_TABLE_ELEMENT File .. 4-10

SQLI_COLUMN File .. 4-11

SQLI_PRIMARY_KEY File .. 4-14

SQLI_FOREIGN_KEY File .. 4-16

SQLI_ERROR_TEXT File... 4-17

SQLI_ERROR_LOG File... 4-18

5. Entry Points/Supported References.. 5-1

6. Other Issues .. 6-1

Domain Cardinality .. 6-1

SQLI and Schemas.. 6-1

SQL Identifier Naming Algorithms ... 6-2

VA Business Rules and Insert/Update/Delete Operations.................................. 6-3

SQLI Implementation Notes .. 6-3

Appendix A: Quick Reference Card..A-1

Glossary ..Glossary-1

Index ..Index-1

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT iii

Orientation

Typographic Conventions

At some places in this manual, you are shown a simulation of your interaction with
your computer. In order to distinguish computer-supplied prompts from your
responses, responses are in bold type. Like this:

COMPUTER’S PROMPT: USER’S RESPONSE

VA FileMan Information

Additional information about VA FileMan is available on the VA FileMan home
page (on the VA intranet):

http://www.vista.med.va.gov/softserv/infrastr.uct/fileman/

For information about VA FileMan, consult its documentation set. VA FileMan
manuals of particular interest to M-to-SQL vendors are:

VA FileMan V. 21.0 Programmer Manual

VA FileMan V. 21.0 User Manual

These manuals contain detailed information on VA FileMan, including its data
dictionary structures, data format, field types, and API calls. They are available in
both hardcopy and Adobe Acrobat PDF formats. Manuals in PDF format are
available from the VA FileMan home page.

Additional SQLI Information

Additional information about SQLI is available on the SQLI home page:

http://www.vista.med.va.gov/softserv/infrastr.uct/sqli/

On that home page, an additional SQLI manual is available, targeted for sites
implementing SQLI:

• VA FileMan SQLI Site Manual

Orientation

iv VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT v

Introduction

What is VA FileMan?

VA FileMan is a database management system (DBMS) which is used at DVA
medical facilities. It is implemented in the M programming language.

With the release of VA FileMan Version 21 in December of 1994, VA FileMan
introduced a silent Database Server (DBS) programming API, which set the stage
for extending database access to non-host users on local and wide area networks.
SQLI, for example, makes extensive use of VA FileMan’s DBS API.

What is SQLI?

VA FileMan’s SQLI (SQL Interface) product projects a relational view of VA
FileMan data dictionaries for use by M-to-SQL vendors. This provides a supported
mechanism for M-to-SQL vendors to access VA FileMan’s internal data dictionaries.
M-to-SQL vendors can use SQLI to map their SQL data dictionaries directly to VA
FileMan data. By doing this they view and access VA FileMan data as native SQL
tables.

What is the Purpose of this Manual?

This manual is designed to help you, the M-to-SQL vendor, create and maintain an
SQLI mapper utility. An SQLI mapper utility reads the projection of VA FileMan’s
data dictionaries provided by SQLI. It maps your M-to-SQL product’s data
dictionaries based on SQLI’s projection so that your M-to-SQL product can directly
access VA FileMan data as relational tables.

This manual may also be useful if you are providing technical support for an SQLI
system; it can help provide an understanding of how SQLI works.

Introduction

vi VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 1-1

1. Building an SQLI Mapper

To map your M-to-SQL product’s data dictionaries to directly access VA FileMan
data, based on the information projected by SQLI, you will need to create an SQLI
mapper utility. This SQLI mapper utility should read the published information on
each VA FileMan file from the SQLI’s projection. It should use this information to
generate DDL commands (or use some similar method) that map your SQL data
dictionaries directly to VA FileMan data.

M-to-SQL
Product

M-to-SQL
Vendor’s

SQLI
Mapper

F
ileM

an D
D

M Server

S
Q

L D
D

S
Q

LI P
rojection of F

M
 D

D

SQL/ODBC
Trusted Users

VISTA
M Application

Users

(VA FileMan Files)

VA FileMan M-based
Apps

B
usiness R

ules

VA FileMan
Trusted Users

VISTA Data

SQL
Apps

B
usiness R

ules

SQL/ODBC
Application

Users

Building an SQLI Mapper

1-2 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

Information Provided by SQLI

SQLI’s projection of VA FileMan data dictionaries provides:

• A complete projection of VA FileMan files and fields as relational tables.

• Pre-defined SQL-compatible names for tables, columns, and keys.

• Global locations to retrieve data elements directly.

• Code to retrieve data elements through API calls.

• Code to convert retrieved data elements from internal FileMan format to
base and external column formats.

• A standard set of strategies for VA FileMan field types whose projection in
relational terms is non-trivial (pointer fields, variable pointer fields, word
processing fields, and subfiles).

This information is published in a way that is tailored to use by an M-to-SQL
vendor. It relieves you from having to access VA FileMan’s internal data dictionary
structures to determine certain parameters that are not explicit in VA FileMan.
Also, using SQLI should insulate your code from proposed changes in the VA
FileMan data dictionary.

Organization of SQLI Information

SQLI is implemented as a set of VA FileMan files within a single M global, with no
multiples or word processing fields.

The organization of the files mirrors SQL2 standard Data Definition Language
(DDL) syntax. Every data structure in the main SQLI files reflects some portion of
the DDL commands needed to create SQL data dictionaries for VA FileMan data
(essentially, the CREATE TABLE command).

Additional syntax has been added to support the definition of M global structures,
virtual columns, key and output formats and other objects outside the scope of the
SQL standard.

Building an SQLI Mapper

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 1-3

SQLI Entity - Relationship Diagram

This diagram organizes the file entities in their importance to the operation of the
SQLI package. It shows conceptual relationships between the files, but not a
comprehensive view of the physical pointer relationships between files.

Table_Element

Table

Foreign_Key

T_NAME

E_TABLE

E_TYPE
(col., p.key, f.key)

Data_Type

Domain

DM_DATA_TYPE

(other fields to
constrain format)

Column

E_DOMAIN

Primary_Key

one or more

one and only one

Symbols

Output_FormatKey_Format

Conversion Files

Key_Word

Error_Log

Error_Text

Support Files

Schema

Building an SQLI Mapper

1-4 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

Guidelines for SQLI Mappers

VA Programming Standards and Conventions

Be aware that your code will be running in VA production accounts along with VA
code. Adherence to the VA Programming SAC (Standards and Conventions) is
highly recommended. This includes guidelines about the setting and killing of
variables, the ways that devices are used, and not interfering with the error
trapping provided by VA’s Kernel package.

Obtaining a formal namespace from the VA’s DBA (Database Administrator) is also
advised.

Populating the SQLI_KEY_WORD File

The SQLI_KEY_WORD file stores any words that SQLI should not use for SQL
entity names. At any given site, it may not be populated with any keywords at all.
So you (the M-to-SQL vendor) should use SQLI’s KW^DMSQD entry point to
populate this SQLI_KEY_WORD file with:

• Any keywords specific to your (vendor) M-to-SQL product

• The standard set of reserved keywords for SQL as defined by the ANSI
standard for SQL

• The keywords for ODBC as defined by Microsoft

Also, in your instructions to sites using your SQLI mapper, make sure that adding
your keywords to the SQLI_KEY_WORD file is done prior to the site generating
their first SQLI projection.

Data Dictionary Synchronization

To aid sites with data dictionary synchronization, your SQLI mapper utility should
provide entry points for the following functions:

• Remapping your SQL data dictionary for all tables projected by SQLI.

• Remapping your SQL data dictionary for one table projected by SQLI.

Building an SQLI Mapper

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 1-5

Kernel Compatibility

Besides conforming to the VA Programming SAC, be aware that sites will probably
want to run your utilities as background tasks using Task Manager, a module of
VA’s Kernel package. Sites are likely to want to create a single "task" that calls
your keyword utility, runs the VA SQLI projection, and then runs your SQLI
mapper.

To be compatible with running as a background task in TaskMan, your keyword
utility and SQLI mapper should:

• Not issue any READs or in any way make either entry point interactive. This
allows the entry point to run in the background. If you need to ask questions,
separate that section of code from the actual SQLI mapper code.

• Not issue USE commands. The "current device" is already opened and
available when an entry point is run as a task in the Kernel environment. If
you need to use USE commands (for example, to write to a host file), make
sure you store the value of the current device so you can return to it.

• For output, issue WRITE commands. Don’t use escape sequences, however;
any output should be able to print on a simple line printer.

See the Task Manager section of the Kernel Systems Manual for more information
on background tasks in the Kernel environment.

Building an SQLI Mapper

1-6 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 2-1

2. Parsing the SQLI Projection

This chapter gives examples of how to traverse SQLI’s indexes and retrieve the
information needed to map your SQL data dictionaries.

Retrieving the information stored in the SQLI files involves traversing their
indexes and retrieving the field values stored in their indexes and in the entries
themselves. Full descriptions of the SQLI file and index structures are contained in
the "File Reference" chapter. You may also want to refer to the Quick Reference
Card provided in Appendix A.

The global location of each SQLI file and its associated fields and indexes are
stable, supported references. You can reference these locations directly.

About the Examples in this Chapter

The specific approaches provided in this chapter are suggestions only, and do not
cover all of the ways you can retrieve information from SQLI.

Using the {B}, {E}, {I}, {K}, and {V} Placeholders

SQLI provides M executable code and expressions in certain fields. This M code
provided by SQLI can use the following placeholder symbols:

Symbol Usage
{B} Base value of a column - used for computation
{E} External value of a column - used for display
{I} Internal value of a VA FileMan field - used for storage

{K[1..n]} Key value - {K} is the current key, {K1} is the first key, etc.
{V[1..n]} Value - used for function arguments and output value

Field Value Placeholders: {I}, {B} and {E}

• The {I} placeholder is used to represent Internal values, that is, the VA
FileMan internal value of a field.

• The {B} placeholder is used to represent Base values, that is, the base value
of a column.

• The {E} placeholders is used to represent External values, that is, the
externally formatted view of the field that a user should see.

Parsing the SQLI Projection

2-2 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

Key Placeholders: {K1}, {K2}, etc.

These placeholders represent portions of the primary key for a table column,
numbered corresponding to the P_SEQUENCE values of a primary key. They are
used primarily in the C_FM_EXEC field of the SQLI_COLUMN file. Substitute the
appropriate primary key values to assemble a global reference to retrieve a
particular column value.

For example:

^DMSQ("C",672,3) = S {V}=$$GET^DMSQU(9.4901,"{K3},{K2},{K1},",.03)

In this case, {K3} represents the value of the part of the primary key whose
P_SEQUENCE is 3; {K2} represents the part of the primary key whose
P_SEQUENCE is 2; and {K1} represents the part of the primary key whose
P_SEQUENCE is 1. This call retrieves the value of a column from its corresponding
VA FileMan field.

Return Value Placeholder: {V}

This placeholder is used to denote where to place a variable that should receive a
return value. One example of where the {V} "value" placeholder is used is in the
SQLI_COLUMN file, in M code provided by the C_FM_EXEC field. For example:

^DMSQ("C",485,3) = S {V}=$$GET^DMSQU(1.1,"{K1},",.04)

In this case, substitute the variable name you want the output of the $$GET
function returned in, for the {V} placeholder, before executing the M code.

Parsing the SQLI Projection

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 2-3

Example File

Throughout the chapter, a simple VA FileMan file, DA RETURN CODES, is
projected by SQLI. Here is a condensed VA FileMan data dictionary listing of this
file:

CONDENSED DATA DICTIONARY---DA RETURN CODES FILE (#3.22)
UCI: VAH,FLD VERSION: 8.0
STORED IN: ^%ZIS(3.22,
--------- ---
FIELD FIELD
NUMBER NAME

.01 DA Return String (RF), [0;1]
2 Terminal Type String (RFX), [0;2]
3 DESCRIPTION (Multiple-3.223), [1;0]
 .01 DESCRIPTION (WL), [0;1]

Here is a global map VA FileMan data dictionary listing of this file:

GLOBAL MAP DATA DICTIONARY #3.22 -- DA RETURN CODES FILE
STORED IN ^%ZIS(3.22, (15 ENTRIES) SITE: KERNEL UCI: KRN,KDE

This file holds the translation between the ANSI DA return code and the
name in the terminal type file that should be used.

CROSS REFERENCED BY: DA Return String(B), DA Return String(B1)

^%ZIS(3.22,D0,0)= (#.01) DA Return String [1F] ^ (#2) Terminal Type String
 ==>[2F] ^
^%ZIS(3.22,D0,1,0)=^3.223^^ (#3) DESCRIPTION
^%ZIS(3.22,D0,1,D1,0)= (#.01) DESCRIPTION [1W] ^

Parsing the SQLI Projection

2-4 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

Starting Point: SQLI_SCHEMA File

This version of SQLI maps all VA FileMan files to a single schema, SQLI. So for the
time being, you can assume that all tables are projected within the same schema
(SQLI). Therefore, your starting point when processing the information in SQLI
should be the SQLI_TABLE file (not the SQLI_SCHEMA file).

In the future, however, SQLI may project tables in more than one schema. At that
point in time, an index may be added on the T_SCHEMA field of the SQLI_TABLE
file, such that you can loop through schemas, and within schemas process tables.

To Find the Projected Table for a File

Within a given schema, you CAN loop through each table and process the
information for that table.

To find the SQLI_TABLE entry for a particular VA FileMan file, you can look up
the file’s number in the "C" cross-reference of the SQLI_TABLE file. For example, to
determine the corresponding SQLI_TABLE entry for the DA RETURN CODES file
(#3.22), do:

> W $O(^DMSQ("T","C",3.22,""))
97

Therefore the internal entry number (ien) of the SQLI_TABLE entry for DA
RETURN CODES is 97. That entry in the SQLI_TABLE file looks like:

NUMBER: 97 T_NAME: DA_RETURN_CODES
 T_SCHEMA: SQLI
 T_COMMENT: This file holds the translation between the ANSI DA return c
 T_VERSION_FM: 1 T_FILE: DA RETURN CODES
 T_UPDATE: JUL 31, 1997 T_GLOBAL: ^%ZIS(3.22,{K})

Processing Tables

When processing a table, once you have the table’s ien in the SQLI_TABLE file, the
next thing to do is loop through the set of table elements for that table.

One way to find the table elements for a given SQLI_TABLE entry is to look up that
entry’s ien in the "D" index of the SQLI_TABLE_ELEMENT file, and find each
matching table element:

S EL="" F S EL=$O(^DMSQ("E","D",tableien,EL)) Q:EL’]""

Parsing the SQLI Projection

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 2-5

However, using the "F" index of the SQLI_TABLE_ELEMENT file, you can see both
how many and also what type of table elements were projected for a table.

For example, in the case of the DA_RETURN_CODES table (ien #97):

Global ^DMSQ("E","F",97
 DMSQ("E","F",97
^DMSQ("E","F",97,"C",256) =
^DMSQ("E","F",97,"C",2273) =
^DMSQ("E","F",97,"C",2274) =
^DMSQ("E","F",97,"C",2275) =
^DMSQ("E","F",97,"P",255) =
Global ^

This shows that five table elements (four columns and one primary key) are
projected for the DA_RETURN_CODES table.

About Table Elements

Every entry in the SQLI_TABLE_ELEMENT file is associated with at least one
entry in the SQLI_COLUMN, SQLI_PRIMARY_KEY, or SQLI_FOREIGN key file.
The associated entries contain the details of each table element, and associate
themselves with table elements by pointing to the SQLI_TABLE_ELEMENT file.

For columns, only a single column in the SQLI_COLUMN file will point to any
given column-type table element.

For primary keys however, one or more entries in the SQLI_PRIMARY_KEY file
will point to the single primary key table element for any given table. This is
because some primary keys have many parts. Pointing to a single primary key table
element is how these many parts in the SQLI_PRIMARY_KEY file are organized
into a single comprehensive primary key.

Likewise for foreign keys, one or more entries in the SQLI_FOREIGN_KEY file will
point to the single foreign key table element for any given foreign key.

Parsing the SQLI Projection

2-6 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

Processing Columns

Let’s look at the column-type table element entries for the DA_RETURN_CODES
table. These provide the relational specifications for each table element:

NUMBER: 256 E_NAME: DA_RETURN_CODES_ID
 E_DOMAIN: INTEGER E_TABLE: DA_RETURN_CODES
 E_TYPE: Column
 E_COMMENT: Primary key #1 of table DA_RETURN_CODES

NUMBER: 2273 E_NAME: DA_RETURN_STRING
 E_DOMAIN: CHARACTER E_TABLE: DA_RETURN_CODES
 E_TYPE: Column
 E_COMMENT: This field holds the string returned from sending a ANSI DA to

NUMBER: 2274 E_NAME: TERMINAL_TYPE_STRING
 E_DOMAIN: CHARACTER E_TABLE: DA_RETURN_CODES
 E_TYPE: Column
 E_COMMENT: This is the string that should be used in a lookup to the
terminal type

NUMBER: 2275 E_NAME: DESCRIPTION
 E_DOMAIN: WORD_PROCESSING E_TABLE: DA_RETURN_CODES
 E_TYPE: Column
 E_COMMENT: The description of the description field is that of holding
the description

To Find a Table Element’s Column Entry

For table elements that correspond to columns, use the "B" index of the
SQLI_COLUMN file to find the corresponding column entry in SQLI.

For example, for the column-type table element entry #2273, the corresponding
column is:

> W $O(^DMSQ("C","B",2273,""))
1734

This entry, in the SQLI_COLUMN file, looks like:

NUMBER: 1734 C_TABLE_ELEMENT: DA_RETURN_STRING
 C_WIDTH: 70 C_FILE: 3.22
 C_FIELD: .01 C_NOT_NULL: Required
 C_SECURE: Not secure C_VIRTUAL: Base column
 C_PARENT: DA_RETURN_CODES_ID C_PIECE: 1
 C_GLOBAL: ,0)

Parsing the SQLI Projection

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 2-7

Ien Columns

SQLI projects one internal entry number (ien) column for every top-level VA
FileMan table. This column is intended to be used by you to store the ien of each
record. This ien is important for a number reasons, one of which is that SQLI
projects the primary key of each table based on the ien column. So you need provide
ien columns for each table. In the case of the DA_RETURN_CODES table, the ien
column is the DA_RETURN_CODES_ID column.

For subfiles, one ien column is projected in SQLI for each of the subfile’s parents.
This allows the projected table to store the ien for each "parent" file entry as these
entries exist in VA FileMan. This allows end-users to reassemble the relationships
in SQL for a subfile table that exist in VA FileMan.

To Find the Primary Key for a Given Table

Use the "F" index in the SQLI_TABLE_ELEMENT file, and search for the single
entry with a type of "P":

S PKEY=$O(^DMSQ("E","F",tableien,"P",""))

This returns a single entry in that represents the primary key of the table in
question. In the case of the DA_RETURN_CODES table, the primary key is:

> W $O(^DMSQ("E","F",97,"P",""))
255

There is only one entry in the SQLI_TABLE_ELEMENT file for a table’s primary
key. The way a primary key is projected in SQLI is that one or more corresponding
entries in the SQLI_PRIMARY_KEY file contain the actual parts of the primary
key. They all point back to the single entry in the SQLI_TABLE_ELEMENT file to
compose a single, combined primary key. Each SQLI_PRIMARY_KEY entry’s
P_SEQUENCE field identifies the order in which that part of the primary key
should be assembled.

Let’s look at the primary key projected for the DA_RETURN_CODES table. Use the
SQLI_PRIMARY_KEY file’s "B" index to discover how many parts are in the
DA_RETURN_CODE file’s primary key, based on its primary key table element:

Global ^DMSQ("P","B",255
 DMSQ("P","B",255
^DMSQ("P","B",255,159) =
Global ^

Parsing the SQLI Projection

2-8 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

In this case, the primary key is a single-part key. That entry looks like:

NUMBER: 159 P_TBL_ELEMENT: DA_RETURN_CODES_PK
 P_COLUMN: DA_RETURN_CODES_ID P_SEQUENCE: 1
 P_START_AT: 0 P_END_IF: ’{K}

Each part of the primary key, as stored in the SQLI_PRIMARY_KEY file, points to
the column upon which that part of the primary key is based. In this case, this part
of the primary key (which is the only part) is based on the ien column for the table.

Primary Key for a Projected Subfile

The DA RETURN CODES file contains a word processing field, which is stored like
a subfile by VA FileMan. Therefore its primary key has more than one part.

If the ien in the SQLI_TABLE file for the DA_RET_CODES_DESCRIPTION file is
98, then the entry in the SQLI_TABLE_ELEMENT file for its primary key can be
obtained as follows:

> W $O(^DMSQ("E","F",98,"P",""))
257

The matching entries in the SQLI_PRIMARY_KEY file are:

Global ^DMSQ("P","B",257
 DMSQ("P","B",257
^DMSQ("P","B",257,160) =
^DMSQ("P","B",257,161) =

These entries look like:

NUMBER: 160
P_TBL_ELEMENT: DA_RET_CODES_DESCRIPTION_PK
 P_COLUMN: DA_RETURN_CODES_ID P_SEQUENCE: 1
 P_START_AT: 0 P_END_IF: ’{K}

NUMBER: 161
P_TBL_ELEMENT: DA_RET_CODES_DESCRIPTION_PK
 P_COLUMN: DA_RET_CODES_DESCRIPTION_ID P_SEQUENCE: 2
 P_START_AT: 0 P_END_IF: ’{K}

These are the two parts to the DA_RET_CODES_DESCRIPTION table’s primary
key.

P_COLUMN for sequence 1 of the primary key points to the ien column in the
subfile table that stores the ien of what, in VA FileMan, would be the subfile’s
parent entry. P_COLUMN for sequence 2 of the primary key points to the ien

Parsing the SQLI Projection

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 2-9

column in the subfile table that stores the ien of what, in VA FileMan, would be the
ien of the subfile entry.

Therefore, the primary key for the subfile’s table combines the ien of entries in each
VA FileMan file level above the subfile’s table, plus the ien column of the subfile’s
table itself.

$ORDERING to Loop Through a File’s Data Entries

The P_START_AT and P_ENDIF fields in the SQLI_PRIMARY_KEY file provide
the initial value for a $ORDER loop through a file’s actual data entries and the
expression to complete the loop.

The example below assumes that the table only contains a single element in the
primary key (i.e., the table is for a top-level VA FileMan file). The loop would need
to be more complex to loop through entries for a subfile.

;IEN = internal entry number of record to retrieve
;PSTARTAT = P_START_AT value for table’s single-part primary key.
;PENDIF = P_END_IF value for table’s single-part primary key.
;DMG = global storage for entries in this table. It is assumed
; to be a top-level table, with a single-part primary key.
;
S IEN=PSTARTAT,EXIT=$P(PENDIF,"{K}")_"IEN"_$P(PENDIF,"{K}",2)
F S IEN=$O(@($P(DMG,"{K}")_IEN_")")) D I @EXIT Q
.I @EXIT Q
.;code to retrieve entry would go here
.W !,IEN

Parsing the SQLI Projection

2-10 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

Assembling Record Locations

You can assemble the global location of any record given the following pieces of
information:

• Each primary key entry in the SQLI_PRIMARY_KEY file for the table

• For each primary key entry, the C_GLOBAL value of the corresponding
column

• The column values for each column the primary key is based on

Combine in order of P_SEQUENCE the C_GLOBAL value for each column that is
part of a table’s primary key. You end up with a string that that is a full global
reference, with placeholders for each ien. For example:

^DPT({K},.373,{K})

The following sample routine loops through each column in a table’s primary key in
order of P_SEQUENCE, retrieves the C_GLOBAL value for each column, and
assembles the global reference for file entries for that table:

; DMT: table number in question
; DMK: placeholder string
; DMEP: primary key element
; DM: primary key column sequence (P_SEQUENCE)
; DMC: column for a part of the primary key
; DMCG: C_GLOBAL value for column
; DMG: accumulated global root
;
S DMK="{K}",DMG=""
S DMEP=$O(^DMSQ("E","F",DMT,"P",""))
S DM=0 F S DM=$O(^DMSQ("P","C",DMEP,DM)) Q:DM="" D
. S DMS=DM,DMC=$O(^DMSQ("P","C",DMEP,DM,""))
. S DMCG=^DMSQ("C",DMC,1),DMG=DMG_DMCG_DMK
S DMG=DMG_")" W DMG

The string you generate will look exactly like the value in the SQLI_TABLE file’s
T_GLOBAL field.

To determine the storage location of a particular entry in that table, replace the {K}
placeholders with the value of each part of the primary key for the entry. In the
above example, the first {K} would be replaced by the part of the subfile’s primary
key whose P_SEQUENCE is 1, and the second {K} with the part of subfile’s primary
key whose P_SEQUENCE is 2.

Parsing the SQLI Projection

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 2-11

Retrieving Column Values

Each VA FileMan field type except computed has a fixed global storage location
within each corresponding VA FileMan entry. Appending the value in a column’s
C_GLOBAL field to the storage location of the record in question yields the node
that the corresponding field is stored in.

• For fields using normal storage, SQLI provides the ^-delimited piece of the
data node in the C_PIECE field.

• For fields using extract storage, SQLI provides the extract from and extract
to positions for the data node in the C_EXTRACT_FROM and
C_EXTRACT_THRU fields.

Data you retrieve from VA FileMan data globals is in internal VA FileMan format.
Sometimes you can use this data without conversions of any kind. However:

• Domain conversions are provided when the internal VA FileMan format
differs from the base column format (see Column Value Conversions below).

• Output formats are provided for columns whose external format differs from
the base column format (see Column Value Conversions below).

Retrieving Column Values through a DBS Call

The SQLI_COLUMN file provides code in the C_FM_EXEC field to retrieve the
external field value a DBS call, for columns derived from the following VA FileMan
field types:

• Computed

• Pointer

• Variable Pointer

This code is useful for resolving the external value for pointer field types. A pointer
field in one file can point to a pointer field in another file and so forth, resulting a
long pointer chain until you finally reach a non-pointer field to access the external
value of the original pointer field.

Also, a DBS call is also the only way to retrieve the value for computed fields, which
have no permanent storage. A value of 1 in the C_VIRTUAL field indicates which
columns are based on computed fields. For such columns, use the M code in the
C_FM_EXEC field to retrieve the computed field value.

Parsing the SQLI Projection

2-12 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

Column Value Conversions

SQLI provides column conversions for some columns. Base-to-internal conversions
are provided in the SQLI_DOMAIN file. Base-to-external conversions are provided
in the SQLI_OUTPUT_FORMAT file.

Domain Conversions (Base to Internal)

Some domains created by SQLI provide conversions between VA FileMan internal
{I} format to SQL base {B} data format. No conversion is provided when the SQL
base and VA FileMan internal form for a column are the same.

Specifically, for columns whose domains are date-time valued (FM_DATE and
FM_MOMENT), the domains in the SQLI_DOMAIN file provide conversions in the
DM_BASE_EXEC and DM_INT_EXEC fields. Also, the FM_BOOLEAN domain
provides conversions in the DM_INT_EXPR and DM_BASE_EXPR fields.

You should always check the domain file when processing columns to determine if a
domain conversion is provided.

Output Format Conversions (Base to External)

Given the base column value derived from a VA FileMan field, entries in the
SQLI_OUTPUT_FORMAT file provide M code to generate the external value to
present to the end-user for the column in question.

Columns don’t need an output format if the base column data format is the same as
its external data format. Output formats are therefore provided only for columns
derived from Pointer and Set of Codes VA FileMan field types.

Output formats that affect a column can be designated for individual columns, for
all columns in a given SQLI_DOMAIN domain, and for all columns whose domain
is a given SQLI_DATA_TYPE data type. The order of precedence for which output
format to use, if there is more than one, is as follows:

1. C_OUTPUT_FORMAT in the column’s SQLI_COLUMN entry

2. DM_OUTPUT_FORMAT in the associated domain’s SQLI_DOMAIN entry

3. D_OUTPUT_FORMAT in the associated data type’s SQLI_DATA_TYPE entry

You should always check the SQLI_OUTPUT_FORMAT file when processing
columns to determine if an output format conversion is provided.

Parsing the SQLI Projection

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 2-13

Foreign Keys

Your M-to-SQL product may or may not support foreign keys. If it does, you can use
the foreign keys projected by SQLI to make it easier for the end-user to recreate
certain relationships that are explicit in the original VA FileMan data.

SQLI projects foreign keys in the following standard situations:

Situation Foreign Key(s) Provided
Column based on
pointer field

In the table containing the pointer field column, one for
the pointed-to file, named pointer_field_name_FK. The
join is from the pointer field to the pointed-to table.

Table projected for
subfile or word
processing field

In the subfile or word processing field’s table, one for
each parent table, each named parent_table_PFK. Each
join links the subfile to its original VA FileMan parent.

One advantage of foreign key syntax over joins is that rows are not lost when the
value of a join column is null. For example, foreign key syntax (e.g.,
NEW_PERSON_FK@NAME) can be used in the select clause to obtain the value of
the column NAME from the NEW_PERSON table, rather than doing a join to
NEW_PERSON in a where clause. A row is returned even if the NAME column of
the corresponding row in the NEW_PERSON file is null.

To find all of the foreign keys for a given table, use the "F" index of the
SQLI_TABLE_ELEMENT file, and search for all entries with a type of "F":

S COL="" F S COL=$O(^DMSQ("E","F",tableien,"F",COL)) Q:COL’]""

Parsing the SQLI Projection

2-14 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

Pointer Fields

In the case of foreign keys set up to mimic the relationship provided by pointer
fields, the name of the foreign key is the pointer field’s name followed by "_FK". For
example:

Pointer field column: TEMPORARY_STATE
Pointer field from table: NEW_PERSON

Pointer field to table: STATE
Foreign key name: TEMPORARY_STATE_FK

Subfiles and Parent Foreign Keys

Tables derived from subfiles, including those for word processing fields, have
foreign keys projected by SQLI to each table that is a higher file level (up to the top-
level file that is the highest parent of the subfile). These foreign keys within a
subfile’s table are named with the pointed-to table name followed by "_PFK" (parent
foreign key). For example:

Subfile table: NEW_PERSON_ALERT_DATE_TIME
Parent table: NEW_PERSON

Foreign key name: NEW_PERSON_PFK

Every foreign key to a given table has the same domain as the primary key of that
table. While not supported by SQL, this convention makes entity relationships more
explicit and should help vendors maintain referential integrity constraints during
mapping.

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 3-1

3. VA FileMan and SQL

VA FileMan, SQL and the Relational Model

The following table lists the equivalent terminology between VA FileMan (projected
as a relational database), SQL, and the relational model.

VA FileMan SQL Relational Model
File or Multiple Table Relation
Field Column Attribute
Label Name Name
Field Type Domain Domain
Record Row Tuple

VA FileMan File Definition Structures

The entities that together form a VA FileMan file definition (data dictionary) are
contained at the following locations:

Data Dictionary Element Location
Dictionary of Files ^DIC(Filenumber,
Attribute Dictionary ^DD(Filenumber,
Field Definition Nodes ^DD(Filenumber, fieldnumber,
File Header Zero subscript of the file’s global root

You should not need to access any of this information directly. All relevant
information about file definitions needed for projecting VA FileMan data is
published by SQLI. For more information on file definition structures, see the
Global File Structure chapter of the VA FileMan Programmer Manual.

VA FileMan and SQL

3-2 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

VA FileMan Field Types

The following table lists each of the 9 possible VA FileMan field types. More
information on the specifics of each field type can be found in the VA FileMan V.
21.0 User Manual.

Field Type Description
Computed Value is computed on-the-fly (no permanent storage)

Date Time can be mandatory, optional, or not allowed

Free Text Free Text, up to 250 characters in length

MUMPS Contains MUMPS code

Numeric Can be integer or decimal-valued

Pointer Points to .01 field of an entry in another file (value is ien of
pointed-to entry)

Set of codes Restricts a user to just a few possible values. Codes have an
internal and external format.

Variable
Pointer

Like a pointer field, except that the pointer may be to an entry
in one of several files.

Word
Processing

This is a memo-type field, with no size limit, implemented in a
subfile-like structure. It stores multiple lines of text, and has no
size limit.

VA FileMan Subfiles (Multiples)

VA FileMan entries can contain "multiple-valued" fields, known as multiples or
subfiles. A subfile is essentially a file-within-a-file. For example, a patient file entry
might have an "Appointments" multiple-valued field. This file-within-a-file can
contain one or more entries for the patient’s appointments. Multiples can
themselves contain multiple-valued fields.

Viewed from within VA FileMan, multiples are hierarchical. Data storage for an
entry’s multiple field is contained descendant from the same subscript as data for
the entry itself. However, it is possible to conceptually "flatten" multiples and
project them as if they are standalone tables, especially since they are defined in a
similar fashion to standalone files in VA FileMan’s attribute dictionary. SQLI
handles multiples in this fashion.

VA FileMan and SQL

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 3-3

Mapping VA FileMan Fields to SQL Data Types

VA FileMan field types don’t correspond exactly to the SQL concept of data types,
but are projected in ways that ultimately result in categorization by data type.

You can determine the original VA FileMan field type of a column through the
associated domain’s DM_FILEMAN_FIELD_TYPE field. This is a set of codes field,
the value of which represents the original VA FileMan field type of the column (and
domain) in question.

Ien Column

SQLI provides a column for the original ien of each VA FileMan record. The name
for the ien column is based on the table name followed by "_ID". For example, the
PATIENT file has a single column primary key, PATIENT_ID.

Computed Fields

Projection of computed fields is complicated mildly by the fact that SQL DDL
syntax supports only base data, while Data Manipulation Language supports
expressions. Columns for VA FileMan computed fields are flagged with the
C_VIRTUAL field in the SQLI_COLUMN file. You can retrieve their computed
value with the code in each column’s C_FM_EXEC field, which uses DBS calls.

A number of different computed field return value types are possible: Multiline,
Boolean-valued, Free text, Date, and Numeric.

Note that Multiline computed fields are not supported by the DBS or by SQLI; a
character error message is returned by the SQLI-provided M code as the value for a
multiline computed field.

Date Fields

Code is provided in the two FileMan-specific date domains, FM_DATE and
FM_MOMENT, to convert between internal VA FileMan formatted dates and
date/times, and column "base format" $HOROLOG dates and date/times. The code
is in the DM_INT_EXEC and DM_BASE_EXEC fields.

Free Text, Numeric, and MUMPS Fields

No conversion is needed for these three field types; internal, base, and external
formats are identical.

VA FileMan and SQL

3-4 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

Pointer Fields

The pointer field type conforms to SQL’s foreign key constraint, and is projected as
such in SQLI. VA FileMan, however, allows direct reference to a pointer field,
returning the text value of the primary identifier of the row reached by recursively
following the pointer chain until the identifier is not itself a pointer. This usage is
projected in SQLI by giving pointers a numeric domain and an output format that
uses the DBS to return the resolved value.

For example:

OF_NAME: FOREIGN_FORMAT_PTOF OF_DATA_TYPE: INTEGER
 OF_COMMENT: Output format for pointer to FOREIGN_FORMAT
 OF_EXT_EXPR: $S(’{B}:"",1:$$GET^DMSQU(.44,{B}_",",.01))

Substitute the base value of the column for {B}, and the expression returns the
resolved external text value of the pointer field.

Set of Codes Fields

An output format is provided for each distinct set of codes "set" to display the long
form of the base column value (which should be the code only). These output format
entries are pointed to from SQLI_COLUMN file entries.

For example:

OF_NAME: M_MERGE_O_OVERWRITE OF_DATA_TYPE: CHARACTER
 OF_COMMENT: Set output format
 OF_EXT_EXPR: $P($P(";m:MERGE;o:OVERWRITE;",";"_{B}_":",2),";")

Substitute the base value of the field (which the same as its VA FileMan internal
form for Set of Codes field types) for {B}, and the expression returns the external
value of the code.

Variable Pointer Fields

The variable pointer data type is not relationally atomic, the only true violation of
the relational model in VA FileMan. In SQLI, a column for a variable pointer field
has a character domain, and an output format that returns the VA FileMan display
value from whichever of the VA FileMan files each entry actually points to.

VA FileMan and SQL

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 3-5

Summary: How SQLI Translates FileMan Field Types into SQL Columns

 FM Field
Type

FM Internal
Format

SQL Domain, Data Type,
Base Format

SQL External
Format

Date-valued: (see Date FM Field type).
Numeric valued: (see Numeric FM Field type).

Multiline-valued CHARACTER domain/data type. Null.

Computed

Free Text and Boolean-valued (see Free Text FM Field type).
Date yyymmdd.hhmmss

yyy: #yrs. since 1700
mm: month (00-12)
dd: day (00-31)
hh: hour (00-23)
mm: minute (01-59)
ss: seconds (01-59)

Date only: FM_DATE domain;
DATE data type.
Date w/Time optional:
FM_MOMENT domain,
MOMENT data type.
Date w/Time required:
FM_DATE_TIME domain,
MOMENT data type.
Base format is date/time in
$HOROLOG format.

User-friendly version of
date. For example,

JUL 31, 1997

Free Text Free text. CHARACTER domain, data type.
Base format: same as FM internal
format.

Same as base format.

MUMPS Free text. FM_MUMPS domain,
CHARACTER data type.
Base format: same as FM internal
format.

Same as base format.

Numeric Numeric. NUMERIC or INTEGER domain
and data type.
Base format: same as FM internal
format.

Same as base format.

Pointer Numeric ien of the
pointed-to entry.

POINTER domain.
NUMERIC data type.

External .01 field value
of pointed-to entry
(pointer chain must be
followed) (provided by
an output format).

Set of
codes

Internally stored
"code", typically
shorter than the
external form.

SET_OF_CODES domain;
CHARACTER data type.
Base format: same as FM internal
format.

External value that the
code stands for
(provided by an output
format).

Variable
Pointer

Ien;global file root

For example:

4;DIC(42,

VARIABLE_POINTER domain;
CHARACTER data type.
Base format: External .01 field
value of pointed-to entry at end of
pointer chain.

External .01 field value
of pointed-to entry
(pointer chain must be
followed) (provided by
an output format).

Word
Processing

Memo-type field, no
size limit, stored in
a subfile.

WORD_PROCESSING domain
and data type.
Base format: A set of rows in a
table, one row per textline.

Optionally make
available as a memo
field; otherwise, same
as base format.

VA FileMan and SQL

3-6 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

Word Processing Fields

VA FileMan word processing fields are stored similarly to multiples, and are
projected by SQLI in two ways:

• As a standalone table (each line of text is one entry in the table).

• As columns for vendors who support a HUGE_CHARACTER or MEMO data
type.

If you have an appropriate MEMO-like data type, you could place word-processing
text into a column of this data type, and decide whether or not to make the word-
processing tables available to your users.

The main problem with memo data types is that they usually come with a size
constraint, and consume additional resources when you increase the maximum size.
VA FileMan word processing fields, on the other hand, are unlimited in size. So you
could choose a default size such as 32K for your memo-type columns. In case
truncation occurs, you should return an error for word processing fields whose
contents exceed your default size.

VA FileMan and SQL

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 3-7

VA FileMan Indexes

VA FileMan regular-type cross references are projected by SQLI as tables. Other
types of cross-references (Trigger, KWIC, MUMPS, Mnemonic, Soundex, and
Bulletin) are not projected. Cross-references are primarily for vendor optimization,
and should not be made available as tables to end-users.

Tables derived from cross-references use names based on the name of the indexed
table followed by "_Xs_" where "s" is the index subscript, followed by the name of
the column indexed (PATIENT_XB_NAME,
PATIENT_XSSN_SOCIAL_SEC_NUMBER, etc.) Compression is used such that all
names are no longer than 30 characters. For example:

PATIENT_CANCER_STATUS_CODE (table name)
PATIENT_CANC_STAT_CODE_XB_NAME ("B" index table name - compressed)

A table is projected for a cross-reference if its T_MASTER_TABLE field is
populated. For multiples, there are two kinds of references, both of which are
projected as tables by SQLI: regular and whole-file cross-references.

The following example shows the various parts of the table projected for a simple
cross-reference for a top level file (the PATIENT file):

Table Projected for "B" Index of PATIENT File
NUMBER: 4650 T_NAME: PATIENT_XB_NAME
 T_SCHEMA: SQLI T_COMMENT: Index of PATIENT by NAME
 T_MASTER_TABLE: PATIENT T_VERSION_FM: 1
 T_UPDATE: MAY 05, 1997 T_GLOBAL: ^DPT("B",{K},{K})

Table Elements Projected for PATIENT_XB_NAME
>D ^%G<RET>
Global ^DMSQ("E","F",4650
 DMSQ("E","F",4650
^DMSQ("E","F",4650,"C",53797) =
^DMSQ("E","F",4650,"C",53798) =
^DMSQ("E","F",4650,"P",53796) =

NUMBER: 53796 E_NAME: PATIENT_XB_NAME_PK
 E_DOMAIN: PATIENT_XB_NAME_ID E_TABLE: PATIENT_XB_NAME
 E_TYPE: Primary key
 E_COMMENT: Primary key header for PATIENT_XB_NAME

NUMBER: 53797 E_NAME: NAME
 E_DOMAIN: CHARACTER E_TABLE: PATIENT_XB_NAME
 E_TYPE: Column
 E_COMMENT: Index Primary Key #1 for PATIENT_XB_NAME.NAME

NUMBER: 53798 E_NAME: PATIENT_ID
 E_DOMAIN: INTEGER E_TABLE: PATIENT_XB_NAME
 E_TYPE: Column
 E_COMMENT: Index Primary Key #2 for PATIENT_XB_NAME.PATIENT_ID

VA FileMan and SQL

3-8 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

Columns Projected for PATIENT_XB_NAME
>D ^%G<RET>
Global ^DMSQ("C","B",53797:53798
 DMSQ("C","B",53797:53798
^DMSQ("C","B",53797,43834) =
^DMSQ("C","B",53798,43835) =
Global ^

NUMBER: 43834 C_TABLE_ELEMENT: NAME
C_GLOBAL: ^DPT("B",

NUMBER: 43835 C_TABLE_ELEMENT: PATIENT_ID
C_PARENT: NAME C_GLOBAL: ,

Primary Key Projected for PATIENT_XB_NAME
>D ^%G<RET>
Global ^DMSQ("P","C",53796
 DMSQ("P","C",53796
^DMSQ("P","C",53796,1,8529) =
^DMSQ("P","C",53796,2,8530) =

NUMBER: 8429 P_TBL_ELEMENT: PATIENT_XB_NAME_PK
P_COLUMN: NAME P_SEQUENCE: 1

NUMBER: 8530 P_TBL_ELEMENT: PATIENT_XB_NAME_PK
P_COLUMN: PATIENT_ID P_SEQUENCE: 2

Partial Listing of the Index

^DPT("B","AMIE,TEST P",187) =
^DPT("B","BUNNY,BUGS",228) =
^DPT("B","CAMEL,HRMS",241) =

NAME column

PATIENT_ID column

In the example above, the primary key is a two-part key, based on two columns: the
"NAME" and "PATIENT_ID" columns. The global path to "entries" in the index
table is ^DPT("B",{K},{K}). Note that one part of the key is not ien-based, but
instead is the indexed value.

For indexes whose indexed value exceeds 30 characters, a "key format" is provided
that provides the transformation between the actual indexed column’s field values,
and the truncated-to-30 character version of the column values that appears in the
index. For more information, see the description of the SQLI_KEY_FORMAT file.

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 4-1

4. File Reference

In the descriptions of SQLI files that follow, each file description contains:

• Global root of the SQLI file.

• VA FileMan data dictionary number of the SQLI file.

• All available cross references for traversing the SQLI file’s entries.

• A listing of each field, with the field name, type, location, and description.

• Additional information about the purpose of the file and its fields.

• A description of the format of any code fragments supplied by this file.

Note In the tables on the following pages, SQLI field names followed by an
asterisk (e.g., "S_NAME*") are never NULL when the SQLI files are
populated by SQLI. This documentation convention is used to indicate that
such fields are key fields for each SQLI file.

File Reference

4-2 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

SQLI_SCHEMA File

Global Root: ^DMSQ("S",
VA FileMan Number: 1.521
Indexes:

B: ^DMSQ("S","B",$E(S_NAME,1,30),ien)=""

Field Name Type
Node;
Piece Description

S_NAME* Free Text 0;1 Schema name (valid SQL identifier).
S_SECURITY Free Text 1;1 Not yet implemented; for future use. M

routine to check security privileges on a
particular schema.

S_DESCRIPTION Free Text 0;2 A short description of the mapped
application group.

Purpose: The SQLI_SCHEMA file provides a place for SQLI to associate tables
with a schema name. This allows each VA FileMan file to be automatically mapped
to a schema.

Currently, SQLI automatically projects all tables as part of one schema, "SQLI".
SQLI does not provide facilities for dividing VA FileMan files into separate
schemas.

File Reference

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 4-3

SQLI_KEY_WORD File

Global Root: ^DMSQ("K",
VA FileMan Number: 1.52101
Indexes:

B: ^DMSQ("K","B",$E(KEY_WORD,1,30),ien)=""

Field Name Type
Node;
Piece Description

KEY_WORD Free Text 0;1 SQL, ODBC, or vendor keyword to
reserve.

Purpose: This file is the collection point for keywords that should not be used for
SQL entity names. You can add any keywords specific to your own SQL
implementation through the KW^DMSQD entry point.

The SQLI_KEY_WORD file may not be populated with any key words at all. So you
(the M-to-SQL vendor) should use the KW^DMSQD entry point to populate this
SQLI_KEY_WORD file with:

• Any keywords specific to your (vendor) M-to-SQL product

• The standard set of reserved keywords for SQL as defined by the ANSI
standard for SQL

• The keywords for ODBC as defined by Microsoft

In your instructions to sites using your SQLI mapper, make sure that adding your
keywords to the SQLI_KEY_WORD file is done prior to the site generating their
first SQLI projection.

File Reference

4-4 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

SQLI_DATA_TYPE File

Global Root: ^DMSQ("DT",
VA FileMan Number: 1.5211
Indexes:

B: ^DMSQ("DT","B",$E(D_NAME,1,30),ien)=""

Field Name Type
Node;
Piece Description

D_NAME* Free Text 0;1 Data type name (should be a valid
SQL identifier).

D_COMMENT Free Text 0;2 Brief description.
D_OUTPUT_STRATE
GY

Mumps Extract
Storage
Node 1,
1-245

Not yet implemented; for future
use. Intended for future data types
(pictures, formatted word
processing, etc.) that VA FileMan
might support in the future.

D_OUTPUT_FORMAT Pointer to
SQLI_OU
TPUT_FO
RMAT

0;3 Not implemented in the first
version of SQLI. Pointer to an
Output Format to use for columns
whose domains point to this data
type.

Purpose: The SQLI_DATA_TYPE file is a simple list of SQL standard data types
(BOOLEAN, CHARACTER, DATE, INTEGER, MEMO, MOMENT, NUMERIC,
TIME) with one additional type, PRIMARY_KEY. This allows the custom VA
FileMan domains in the SQLI_DOMAIN file to always be associated with a specific
base SQL data type.

SQL data types determine the SQL rules for comparing values from different
domains, and the operators that may be used on them. So each domain in the
SQLI_DOMAIN file has an explicit SQL data type that SQL vendors should use.

Note: The PRIMARY_KEY data type (and domain) is unique to SQLI. It is used to
relate primary keys to foreign keys unambiguously.

File Reference

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 4-5

SQLI_DOMAIN File

Global Root: ^DMSQ("DM",
VA FileMan Number: 1.5212
Indexes:

B: ^DMSQ("DM","B",$E(DM_NAME,1,30),ien)=""
C: ^DMSQ("DM","C",$E(DM_TABLE,1,30),ien)=""
D: ^DMSQ("DM","D",$E(DM_FILEMAN_FIELD_TYPE,1,30),ien)=""
E: ^DMSQ("DM","E",$E(DM_DATA_TYPE,1,30),ien)=""

Field Name Type
Node;
Piece Description

DM_NAME* Free Text 0;1 Domain name (valid SQL identifier).
DM_DATA_TYP
E*

Pointer to
SQLI_DATA_
TYPE

0;2 Pointer to the SQL data type to use
for this domain.

DM_COMMENT Free Text 0;3 Brief description.
DM_TABLE Pointer to

SQLI_TABLE
0;4 If this domain is for a primary or

foreign key, points to the table of the
primary key.

DM_WIDTH Numeric 0;5 Maximum width of external value.
DM_SCALE Numeric 0;6 Default number of decimal places,

for
NUMERIC data types only.

DM_OUTPUT_F
ORMAT

Pointer to
SQLI_OUTP
UT_FORMAT

0;7 Not implemented in the first version
of SQLI. Pointer to an Output
Format to use for columns that use
this domain.

DM_INT_EXPR Mumps Extract
Storage
Node 1,
1-245

M expression to convert base value
to internal (VA FileMan) format.

DM_INT_EXEC Mumps Extract
Storage
Node 2,
1-245

M execute statement to convert base
value to internal (VA FileMan)
format.

DM_BASE_EXP
R

Mumps Extract
Storage
Node 3,
1-245

M expression to convert internal (VA
FileMan) value to base format.

DM_BASE_EXE
C

Mumps Extract
Storage
Node 4,

M execute statement to convert
internal (VA FileMan) value to base
format.

File Reference

4-6 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

1-245
DM_FILEMAN_
FIELD_TYPE

Set of codes 0;8 ’F’ FOR FREE TEXT
’N’ FOR NUMERIC
’P’ FOR POINTER
’D’ FOR DATE
’W’ FOR WORD-PROCESSING
’K’ FOR MUMPS
’C’ FOR CALCULATED
’B’ FOR BOOLEAN
’S’ FOR SET
’V’ FOR VARIABLE POINTER

Original VA FileMan field type for
all elements using this domain, for
domains derived from VA FileMan
fields. Boolean means Boolean
Computed.

Purpose: Each entry in this file is a custom domain, which defines a set of values
from which all objects of this domain must be drawn. In SQLI, all table elements
(columns, primary keys, and foreign keys) have a domain that restricts them to
their domain set.

Each domain points to a data type (from the SQLI_DATA_TYPE file) which should
be used as the SQL data type for this domain. Other fields in the SQLI_DOMAIN
file also constrain the set of possible values for the domain. For more information
see Mapping VA FileMan Fields to SQL Data Types earlier in this chapter.

Code Fragment Formats

DM_INT_EXPR: $S({B}="":0,1:{B})
(provide {B}, evaluates to internal FileMan form)

DM_BASE_EXPR: $S({I}:{I},1:"")
(provide {I}, evaluates to base form)

DM_INT_EXEC: S %H={B} D YMD^%DTC S {I}=X
(provide {B}, get {I} back)

DM_BASE_EXEC: N %H,X S X={I} D H^%DTC S {B}=%H
(provide {I}, get {B} back)

File Reference

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 4-7

SQLI_KEY_FORMAT File

Global Root: ^DMSQ("KF",
VA FileMan Number: 1.5213
Indexes:

B: ^DMSQ("KF","B",$E(KF_NAME,1,30),ien)=""
C: ^DMSQ("KF","C",$E(KF_DATA_TYPE,1,30),ien)=""

Field Name Type
Node;
Piece Description

KF_NAME* Free Text 0;1 Key format name.
KF_DATA_TYPE* Pointer to

SQLI_DATA_T
YPE

0;2 Pointer to data type used by
associated primary key (should
always point to PRIMARY_KEY
data type).

KF_COMMENT Free Text 0;3 Brief description.
KF_INT_EXPR Mumps Extract

Storage
Node 1,
1-245

M expression to convert internal
value {I} of indexed field to index
primary key value {K}.

KF_INT_EXEC Mumps Extract
Storage
Node 2,
1-245

M executable code to set internal
value {I} of indexed field to index
primary key value {K}.

Purpose: Use the conversions provided in this file to translate between a column’s
value and the part of a primary key that uses that column. In most cases, a
conversion from column value to key value is not needed.

Currently, the main situation in which a conversion is provided is for the VA
FileMan indexes that are projected as tables. The index subscript is considered part
of the primary key of the projected table for an index. Currently, the (regular) index
subscript for a VA FileMan file is based on the field value, but is subject to
truncation to 30 characters. So the value of the part of the key based on a column
could differ from the value of the column itself. A standard key format is supplied
and linked to all parts of primary keys that use index subscripts, whose indexed
fields’ maximum length exceeds 30 characters.

Code Fragment Formats

KF_INT_EXPR: $E({I},1,30)
(provide {I}, key is returned)

KF_INT_EXEC: S {K}=$E({I},1,30)
(provide {I}, get {K} back)

File Reference

4-8 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

SQLI_OUTPUT_FORMAT File

Global Root: ^DMSQ("OF",
VA FileMan Number: 1.5214
Indexes:

B: ^DMSQ("OF","B",$E(OF_NAME,1,30),ien)=""

Field Name Type
Node;
Piece Description

OF_NAME* Free Text 0;1 Output format name.
OF_DATA_TYPE* Pointer to

SQLI_DATA
_TYPE

0;2 Pointer to the data type for which
this output format applies.

OF_COMMENT Free Text 0;3 Brief description.
OF_EXT_EXPR Mumps Extract

Storage
Node 1,
1-245

M expression to convert base value to
external value.

OF_EXT_EXEC Mumps Extract
Storage
Node 2,
1-245

Will not be implemented for the first
version of SQLI (patch DI*21*38). M
executable code to convert base value
to external value.

Purpose: Given the base column value derived from a VA FileMan field, entries in
the SQLI_OUTPUT_FORMAT file provide M code to generate the external value to
present to the end-user for the column in question.

Columns don’t need an output format if the base column data format is the same as
its external data format. Output formats are therefore provided only for columns
derived from Pointer and Set of Codes VA FileMan field types.

When looking for whether an output format is provided for a column, use the
column’s output format if one exists. Next, check the column’s domain for an output
format only if one is not found for the column. Finally, check the domain’s data type
for an output format if one is not found for the domain.

Code Fragment Formats

OF_EXT_EXPR: $S(’{B}:"",1:$$GET^DMSQU(9.4,{B}_",",.01))
(substitute base value for all {B} placeholders;
evaluates to external format of data).

File Reference

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 4-9

SQLI_TABLE File

Global Root: ^DMSQ("T",
VA FileMan Number: 1.5215
Indexes:

B: ^DMSQ("T","B",$E(T_NAME,1,30),ien)=""
C: ^DMSQ("T","C",$E(T_FILE,1,30),ien)=""
D: ^DMSQ("T","D",$E(T_GLOBAL,1,30),ien)=""
E: ^DMSQ("T","E",$E(T_MASTER_TABLE,1,30),ien)=""

Field Name Type
Node;
Piece Description

T_NAME* Free Text 0;1 Table name (valid SQL identifier).
T_SCHEMA* Pointer to

SQLI_SCHE
MA

0;2 Pointer to table’s schema.

T_COMMENT Free Text 0;3 Brief description.
T_MASTER_T
ABLE

Pointer to
SQLI_TABLE

0;4 Only populated if this table is
projected for an index (it points to the
indexed table.)

T_VERSION_F
M

Numeric 0;5 Reserved for future use.

T_ROW_COUN
T

Numeric 0;6 Estimated number of rows in the table.
This field is not populated by the SQLI
projection, but instead by the
ALLS^DMSQS and STATS^DMSQS
entry points.

T_FILE Numeric 0;7 VA FileMan data dictionary number of
file, subfile, or word processing field
the table is derived from. It is null for
tables that project indexes.

T_UPDATE Date 0;8 Date table projection last updated.
T_GLOBAL Free Text extract

storage
node 1,
1-245

Global location of file entries. For
documentation purposes only; use the
C_GLOBAL values in the
SQLI_COLUMN file to determine the
global location of file entries in code.
{K} placeholders in T_GLOBAL field
values signify each part of the primary
key.

Purpose: Entries in the SQLI_TABLE file project VA FileMan files, multiple fields,
word processing fields, and indexes as tables.

File Reference

4-10 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

SQLI_TABLE_ELEMENT File

Global Root: ^DMSQ("E",
VA FileMan Number: 1.5216
Indexes:

B: ^DMSQ("E","B",$E(E_NAME,1,30),ien)=""
C: ^DMSQ("E","C",$E(E_DOMAIN,1,30),ien)=""
D: ^DMSQ("E","D",$E(E_TABLE,1,30),ien)=""
E: ^DMSQ("E","E",$E(E_TYPE,1,30),ien)=""
F: ^DMSQ("E","F",E_TABLE,E_TYPE,ien)=""
G: ^DMSQ("E","G",E_TABLE,E_NAME,ien)=""

Field Name Type
Node;
Piece Description

E_NAME* Free Text 0;1 Table element name (a valid SQL
identifier). Foreign keys are
distinguished by the suffix _FK or
_PFK, primary keys by _PK.

E_DOMAIN* Pointer to
SQLI_DOMAIN

0;2 Pointer to the domain to use for
the table element.

E_TABLE* Pointer to
SQLI_TABLE

0;3 Pointer to the table the element is
part of.

E_TYPE* Set of codes 0;4 Type of table element:

’C’ FOR COLUMN
’F’ FOR FOREIGN KEY
’P’ FOR PRIMARY KEY

E_COMMENT Free Text 0;5 Brief description.

Purpose: In SQL Data Definition Language (DDL) a table is defined by the DDL
command:

CREATE TABLE <table-name> (table-element-commalist)

There is one entry in the SQLI_TABLE_ELEMENT file for each table element
(columns, primary keys, and foreign keys) that should be the included in a
CREATE TABLE command for each table projected in SQLI.

Entries in this file contain the two essential elements of an attribute in the
relational model: attribute-name (E_NAME) and domain (E_DOMAIN). Elements
not defined in the relational model, but necessary for physical mapping and
formatting of table elements are contained in SQLI_COLUMN,
SQLI_PRIMARY_KEY and SQLI_FOREIGN_KEY files.

File Reference

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 4-11

SQLI_COLUMN File

Global Root: ^DMSQ("C",
VA FileMan Number: 1.5217
Indexes:

B: ^DMSQ("C","B",$E(C_TABLE_ELEMENT,1,30),ien)=""
C: ^DMSQ("C","C",$E(C_PARENT,1,30),ien)=""
D: ^DMSQ("C","D",C_FILE,C_FIELD,ien)=""
E: ^DMSQ("C","E",$E(C_OUTPUT_FORMAT,1,30),ien)=""

Field Name Type
Node;
Piece Description

C_TBL_ELE
MENT*

Pointer to
SQLI_TAB
LE_ELEM
ENT

0;1 Pointer to the table element entry that this
column is associated with.

C_FILE Numeric 0;5 Corresponding VA FileMan file number, if
column was derived from a data dictionary
field.

C_WIDTH Numeric 0;2 Maximum display width of column.
C_SCALE Numeric 0;3 Default number of decimal points for

NUMERIC data type only. If scale is
specified as 0, the column is projected as
INTEGER.

C_FIELD Numeric 0;6 Corresponding VA FileMan field number,
if column was derived from a data
dictionary field.

C_NOT_NUL
L

Set of
codes

0;7 1 if column is required in VA FileMan; 0 if
not.

C_SECURE Set of
codes

0;8 Not yet implemented; for future use.

C_VIRTUAL Set of
codes

0;9 1 if column is derived from a computed
field, 0 if not. If true, the corresponding
field value must be retrieved using a DBS
call (one is provided for this in the
C_FM_EXEC field.)

C_PARENT Pointer to
SQLI_CO
LUMN

0;10 Populated if the global reference in the
C_GLOBAL field is not a global root.
Points to the column containing the next
higher piece of the global reference (in
C_GLOBAL) to which the current file
level’s key value and C_GLOBAL string
should be appended to create the full
global reference to the column’s data.
• Null for computed field columns (no

File Reference

4-12 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

permanent storage).
• Null for ien columns of top-level files

(already at the highest level).
• Null for the first index subscript column

of an index table.
C_GLOBAL Mumps Extract

Storage
node 1,
1-245

For columns with permanent storage,
partial global reference for the node where
the column’s data is stored.

C_PIECE Numeric 0;11 For normally stored VA FileMan fields:
The ^-delimited piece of the VA FileMan
node field is stored in.

C_EXTRACT_
FROM

Numeric 0;12 For extract-storage type VA FileMan fields:
The first character extract position of the
VA FileMan node the field is stored in.

C_EXTRACT_
THRU

Numeric 0;13 For extract-storage type VA FileMan fields:
The last character extract position of the
VA FileMan node the field is stored in.

C_COMPUTE
_EXEC

Mumps Extract
Storage
node 2,
1-245

The internal M code VA FileMan uses to
calculate a computed field’s value.
Warning: This code may depend on the
existence of a full FileMan context; the
code in C_FM_EXEC is a safer alternative.

C_FM_EXEC Mumps Extract
Storage
node 3,
1-245

M code to retrieve value of computed and
pointer fields. Uses the DBS $$GET1^DIQ
call to retrieve the field value.

C_POINTER Mumps Extract
Storage
node 4,
1-245

For columns derived from set of codes
fields, this field contains the pairs of
internal and external forms of each code
separated by semicolons. The internal and
external forms of a code are separated by
colons. For example:

y:YES;n:NO;

For columns derived from pointer fields,
this field contains the global root of the
referenced file. For example:

DIC(4,

C_OUTPUT_
FORMAT

Pointer to
SQLI_OU
TPUT_
FORMAT

0;4 Pointer to the output format to use for this
column, if one is needed, if the external
format of the data differs from the base
format.

File Reference

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 4-13

Purpose: The SQLI_COLUMN file contains the formatting and physical structure
specifications for each column table element in projected tables. Each entry in the
SQLI_COLUMN file has a single corresponding SQLI_TABLE_ELEMENT entry
that provides the relational specifications (name and domain) for the column.

Code Fragment Formats

C_GLOBAL: (ien columns, top-level file) ^DIZ(662000,

(ien columns, subfile) ,"EX",
(VA FileMan field columns) ,0)
(Note: this field does not actually hold code, but
instead holds a global reference.)

C_COMPUTE_EXEC: S X=$S($D(^DIA(DIA,D0,3)):^(3),1:"<deleted>")
(raw code from DD to set X to computed field value; may
require VA FileMan environment context that SQLI can’t
provide - in the above example, the value of D0.)

C_FM_EXEC: S {V}=$$GET^DMSQU(9.4901,"{K3},{K2},{K1},",.03)
(uses DBS call to set the variable you substitute in
{V} to the external value of the computed or pointer
field. You must substitute appropriate iens for all {K}
placeholders to identify the entry in question.)

File Reference

4-14 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

SQLI_PRIMARY_KEY File

Global Root: ^DMSQ("P",
VA FileMan Number: 1.5218
Indexes:

B: ^DMSQ("P","B",$E(P_TBL_ELEMENT,1,30),ien)=""
C: ^DMSQ("P","C",P_TBL_ELEMENT,P_SEQUENCE,ien)=""
D: ^DMSQ("P","D",$E(P_COLUMN,1,30),ien)=""

Field Name Type
Node;
Piece Description

P_TBL_ELEME
NT*

Pointer to
SQLI_TAB
LE_
ELEMENT

0;1 Associates this part of a table’s primary
key with the single entry in the
SQLI_TABLE_ELEMENT file that
organizes the entire primary key.

P_COLUMN* Pointer to
SQLI_COL
UMN

0;2 Pointer to the column on which this
part of a table’s primary key is based.

P_SEQUENCE* Numeric
(integer)

0;3 Sequence number of this part of the
table’s primary key. Use to determine
what order to combine primary key
columns to assemble the global path to
an entry.

P_START_AT Free Text 0;4 M literal to initialize initial subscript
value for a $ORDER loop through this
part of the list of primary keys of a
table.

P_END_IF Mumps Extract
Storag
e
node 1,
1-245

M expression which returns true when
the $ORDER loop started at
P_START_AT reaches the end of this
part of the list of primary keys of a
table.

P_ROW_COUNT Integer 0;5 Estimated number entries for this part
of the primary key.

For a multi-part key for the projection
of a subfile, this would be set to the
estimated number of entries at the file
level of this part of the key.

Populate this field with ALLS^DMSQS
or STATS^DMSQS, after SQLI

File Reference

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 4-15

generation.
P_PRESELECT Mumps Extract

Storag
e
node 2,
1-245

Not implemented; for future use.
Code to possibly reference files in other
UCIs with extended reference syntax.

P_KEY_FORMA
T

Pointer to
SQLI_KEY
_FORMAT

0;6 Conversion to use when the primary
key value is different from the column it
is based on. For primary keys of index
tables, a conversion is provided to deal
with the truncation of index subscripts
to 30 characters.

Purpose: Each entry in the SQLI_PRIMARY_KEY file represents one part of the
primary key of a projected table.

The P_COLUMN field points to the table column on which this part of the primary
key is derived from.

The entire primary key of a table is composed of one or more entries in the
SQLI_PRIMARY_KEY file. These entries are organized into a single key by the fact
that they all point to the same single entry in the SQLI_TABLE_ELEMENT file
representing the entire primary key, via the P_TBL_ELEMENT field.

Code Fragment Formats

P_START_AT: 0
(value to start a $ORDER loop at, to go through a
file’s entries. Not necessarily = 0.)

P_END_IF: ’{K}
(substitute for {K} the current ien; use to terminate a
$ORDER loop through a file’s entries. Not necessarily =
"’{K}".)

File Reference

4-16 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

SQLI_FOREIGN_KEY File

Global Root: ^DMSQ("F",
VA FileMan Number: 1.5219
Indexes:

B: ^DMSQ("F","B",$E(F_TBL_ELEMENT,1,30),ien)=""

Field Name Type
Node;
Piece Description

F_TBL_ELEMENT* Pointer to
SQLI_TABLE_
ELEMENT

0;1 Associates this part of a table’s
foreign key with the single entry
in the SQLI_TABLE_ELEMENT
file that organizes the entire
foreign key.

F_PK_ELEMENT* Pointer to
SQLI_PRIMA
RY_KEY

0;2 Pointer to the part of the primary
key of the referenced table, that
this part of the foreign key
corresponds with.

F_CLM_ELEMENT
*

Pointer to
SQLI_COLUM
N

0;3 Pointer to the column in the
current table whose value should
be "joined" with the associated
part of the primary key of the
referenced table.

Purpose: Each entry in the SQLI_FOREIGN_KEY file represents one part of a
foreign key of a projected table.

As with primary keys, the entire foreign key of a table is composed of one or more
entries in the SQLI_FOREIGN_KEY file. These entries are organized into a single
key by pointing to the same SQLI_TABLE_ELEMENT entry, which then represents
the entire foreign key.

A foreign key "pre-specifies" an explicit join between two tables. Foreign keys are
projected for a table by SQLI when a join is already explicit in VA FileMan. SQLI
provides foreign keys for:

• Pointer fields. For columns derived from pointer fields, a foreign key is
provided for each pointer field.

• Subfiles. For table derived from subfiles, one foreign key is provided linking
the subfile table to each of its "parent" tables (i.e., one to every table that
represents a file level above the subfile.)

File Reference

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 4-17

SQLI_ERROR_TEXT File

Global Root: ^DMSQ("ET",
VA FileMan Number: 1.52191
Indexes:

B: ^DMSQ("ET","B",$E(ERROR_TEXT,1,30),ien)=""

Field Name Type
Node;
Piece Description

ERROR_TEXT Free Text 0;1 SQLI error message

Purpose: This file holds a list of SQLI error messages generated during the last
SQLI projection. It is used by entries in the SQLI_ERROR_LOG file, to indicate
which type of SQLI error occurred during SQLI generation.

Entries in this file are purged at the start of each SQLI generation. The file is then
populated with only those errors that occur during the particular SQLI generation.

File Reference

4-18 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

SQLI_ERROR_LOG File

Global Root: ^DMSQ("EX",
VA FileMan Number: 1.52192
Indexes:

B: ^DMSQ("EX","B",$E(FILEMAN_FILE,1,30),ien)=""
C: ^DMSQ("EX","C",$E(ERROR,1,30),ien)=""
D: ^DMSQ("EX","D",$E(ERROR_DATE,1,30),ien)=""
E: ^DMSQ("EX","E",$E(FILEMAN_ERROR,1,30),ien)=""

Field Name Type
Node;
Piece Description

FILEMAN_FILE Numeric 0;1 VA FileMan file number being
processed when error occurred.

FILEMAN_FIELD Numeric 0;2 VA FileMan field number being
processed when error occurred.

ERROR Pointer to
SQLI_ERROR
_TEXT

0;3 Pointer to type of error.

ERROR_DATE Date 0;4 Date of SQLI generation.
FILEMAN_ERROR Pointer to VA

FileMan
DIALOG file

0;5 If the error was generated during a
DBS call, and the DBS itself
returned a particular error, this
points to the DIALOG file reference
returned by the DBS call.

Purpose: This file is a log of all errors encountered when running the SQLI
generation.

You can print out the errors stored in this log directly through VA FileMan. You
can also use the supplied utility, MAIN^DMSQE, to print out the errors sorted by
category of error.

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 5-1

5. Entry Points/Supported References

SQLI provides a set of supported M routine entry points. Some entry points are
intended for the use of M-to-SQL vendors; others are for general use. The supported
entry points are:

Entry Point Description

SETUP^DMSQ Generate SQLI projection (non-interactive)

ALLF^DMSQF Generate SQLI projection (interactive)

KW^DMSQD Load keywords into SQLI_KEY_WORD file

ALLS^DMSQS Generate cardinality of all tables

STATS^DMSQS Generate cardinality of one table

$$CN^DMSQU Internal SQLI naming algorithm (column)

$$FNB^DMSQU Internal SQLI naming algorithm (table)

$$SQLI^DMSQU Internal SQLI naming algorithm (identifier)

$$SQLK^DMSQU Internal SQLI naming algorithm (identifier)

For a full description of each entry point, see the "SQLI Technical Information"
chapter of the VA FileMan SQLI Site Manual.

In addition, all of SQLI’s files, fields, and cross-references as distributed in patch
DI*21*38 can be referenced directly without integration agreements. This enables
M-to-SQL vendors to create SQLI mapping utilities using the SQLI file structures.
Specifically, these are the files in the 1.52 to 1.53 number range, all stored in
^DMSQ.

Entry Points/Supported References

5-2 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 6-1

6. Other Issues

Domain Cardinality

Most domains have no known or absolutely determinable domain cardinality.
Column types for which domain cardinality can be determined are:

• Columns for Set of codes fields: Take the C_POINTER field from the column
derived from the FileMan Set of codes field. $L(C_POINTER,":")-1 yields the
cardinality for this column.

• Columns for Pointer fields: Use the P_ROW_COUNT value of the primary key of
the pointed-to table, or the T_ROW_COUNT of the pointed-to table. This
assumes that P_ROW_COUNT and T_ROW_COUNT have been populated for
the table in question using either STATS^DMSQS or ALLS^DMSQS entry
points.

SQLI and Schemas

This version of SQLI projects all VA FileMan files as part of a single schema,
"SQLI".

If SQLI were to project the same VA FileMan file as part of more than one schema,
it would need to project distinct, separate entries for the file in the SQLI_TABLE
file for each schema. So to project the PATIENT file in four different schemas, four
different SQLI_TABLE entries would be projected, as well as four complete sets of
table elements (columns, primary keys, and foreign keys).

Ordinarily it’s best not to project a given file in more than one schema; in any case,
SQLI currently does not support projecting the same file in multiple schemas.

Other Issues

6-2 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

SQL Identifier Naming Algorithms

By using consistent naming algorithms for files and fields, SQLI ensures that SQL
table names for national files and fields between VA sites are the same. In addition,
the algorithms enforce syntactical correctness and uniqueness of identifiers, and
the exclusion of keywords from the naming of identifiers.

The following conventions are followed for table and table element names:

• Names are 1 to 30 characters long.

• Must start with a letter from A to z.

• May contain only the letters A through z, digits 0 through 9 and the
underline character "_".

• No repeating or trailing underlines are used.

• Names are case insensitive ("a" means the same as "A").

• SQL and vendor-specific keywords may not be used as names.

• Table names must be unique within each schema.

• Table element names (column, primary key, foreign key) must be unique
within each table.

• If the name is too long it is compressed by removing vowels.

Under very unusual circumstances, the naming algorithms can produce a different
field or file name between sites. The known circumstances that could produce a
difference are:

• The names of local files or fields result in a conflict with the naming of a
national file or field.

• A difference in the excluded keyword list maintained in SQLI_KEY_WORD
file between sites results in a naming conflict at one site, and no conflict at
another.

• National packages not loaded at a particular site avoid a naming conflict that
otherwise would occur.

Which Objects Are Processed Through Naming Algorithms

Tables and table element (column, primary key, and foreign key) names are
generated through dynamic naming algorithms. Names for domains, data types,
and output formats are manually assigned SQL-compatible names, but are not
processed through the SQLI naming algorithms.

Other Issues

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 6-3

VA Business Rules and Insert/Update/Delete
Operations

You may want to update VA FileMan files from SQL. Explicit support for vendors to
implement Insert, Update, and Delete operations is not implemented in the first
version of SQLI (patch DI*21*38).

A caution for implementing these types of access to VA FileMan data is that
business rules are quite often not stored in VA FileMan data dictionaries. A
significant portion of the business rules in VISTA applications reside in application
code. Updating that doesn’t go through application software cannot execute
business rules stored solely in application code, and can cause data corruption by
circumventing business rules.

SQLI Implementation Notes

• .001 number fields. The optional .001 number field for a file, if defined,
represents the ien of entries. Such fields are not projected as columns by
SQLI. You can access this value using the TABLE_ID column (the ien
column), which SQLI does project for all tables.

• Asterisked files. Any files (or subfiles) whose names start with an asterisk
are not projected in SQLI. Note: Adding an asterisk to the beginning of a
field name is a convention in the VA Programming SAC to mark the field as
obsolete.

• Dangling pointers. It is possible that a VA FileMan field may contain a
pointer to a file not actually present at a given site. If so, the field is projected
as a normal pointer field would be, but without the corresponding output
format that permits navigation along a pointer chain to resolve the external
value of the pointer. Such fields are flagged in the SQLI_ERROR_LOG
during SQLI generation as "Pointer to Absent Files". Foreign keys for such
fields are not constructed.

• Field attributes not projected. Along with number, the following field
attributes are projected by SQLI: Label, field length, type, specifier, global
subscript location, pointer, multiple-valued, and the first line of the field’s
description. Other field attributes, including output transforms and pointer
screens, are not projected. See the VA FileMan V. 21.0 Programmer Manual,
Global File Structure chapter, for more information about field attributes.

• File Attributes not projected. Only file name and number are projected.
Other file attributes, such as Special Lookup and Screens, are not. See the

Other Issues

6-4 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

VA FileMan V. 21.0 Programmer Manual, Global File Structure chapter, for
more information about file attributes.

• Files not in ^DIC. Only files with entries in ^DIC (the dictionary of files)
are projected. This means only VA FileMan-compatible files are projected.

• Internal VA FileMan tables not projected. Certain tables used by VA
FileMan internally (numbered below two) are not projected. Errors are
logged during SQLI projection in the SQLI_ERROR_LOG. VA FileMan DD
numbers in this category include .001, .1, .12, .15, .21, .3, 1.001 and 1.01.

• Multiline computed fields. Values are not returned for multiline computed
fields. This is because DBS calls cannot retrieve a multiline computed field
value. An example of a multiline computed field is a backward extended
pointer reference.

• Non-regular cross-references. Only regular VA FileMan cross-references
are projected. VA FileMan Trigger, KWIC (Key Word in Context), MUMPS,
Mnemonic, Soundex, and Bulletin type indexes are absent from SQLI. Cross-
references should not be projected to SQL end-users in any case, and only are
projected for possible optimizations.

• Output transforms. Output transforms are not projected. If formatting
needs to be applied, it can be applied at the SQL vendor column level. For
more elaborate output transforms that may call routines for processing, the
logic will need to be reproduced in the context of the query. Depending on
your M-to-SQL product’s capability, the external value of a field (after the
output transform is applied) could be returned by a user-defined function
that invokes the VA FileMan $$EXTERNAL^DILF API call.

• Variable pointers. Variable pointers are projected as text only. Their text
value is resolved, but presented as text.

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 1

Appendix A: Quick Reference Card

Appendix A: Quick Reference Card

A-2 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT A-3

FILE# FILE NAME NODE FIELDS (KEYS IN BOXES) CROSS REFERENCES
1.521 SQLI_SCHEMA ^DMSQ("S",D0,0) (#.01) S_NAME [1F] S_NAME(B)

(#2) S_DESCRIPTION [2F]
^DMSQ("S",D0,1) (#1) S_SECURITY [1F] *for future use

1.52101 SQLI_KEY_WORD ^DMSQ("K",D0,0) (#.01) KEY_WORD [1F] KEY_WORD(B)

1.5211 SQLI_DATA_TYPE ^DMSQ("DT",D0,0) (#.01) D_NAME [1F] D_NAME(B)
(#1) D_COMMENT [2F]
(#3) D_OUTPUT_FORMAT [3P] *for future use

^DMSQ("DT",D0,1) (#2) D_OUTPUT_STRATEGY [E1,245K] *for future use
1.5212 SQLI_DOMAIN ^DMSQ("DM",D0,0) (#.01) DM_NAME [1F] DM_NAME(B)

(#1) DM_DATA_TYPE [2P] DM_DATA_TYPE(E)
(#2) DM_COMMENT [3F]
(#3) DM_TABLE [4P] DM_TABLE(C)
(#4) DM_WIDTH [5N]
(#5) DM_SCALE [6N]
(#6) DM_OUTPUT_FORMAT [7P] *for future use
(#11) DM_FILEMAN_FIELD_TYPE [8S] DM_FILEMAN_FIELD_TYPE(D)

^DMSQ("DM",D0,1) (#7) DM_INT_EXPR [E1,245K]
^DMSQ("DM",D0,2) (#8) DM_INT_EXEC [E1,245K]
^DMSQ("DM",D0,3) (#9) DM_BASE_EXPR [E1,245K]
^DMSQ("DM",D0,4) (#10) DM_BASE_EXEC [E1,245K]

1.5213 SQLI_KEY_FORMAT ^DMSQ("KF",D0,0) (#.01) KF_NAME [1F] KF_NAME(B)
(#1) KF_DATA_TYPE [2P] KF_DATA_TYPE(C)
(#2) KF_COMMENT [3F]

^DMSQ("KF",D0,1) (#3) KF_INT_EXPR [E1,245K]
^DMSQ("KF",D0,2) (#4) KF_INT_EXEC [E1,245K]

1.5214 SQLI_OUTPUT_FORMAT ^DMSQ("OF",D0,0) (#.01) OF_NAME [1F] OF_NAME(B)
(#1) OF_DATA_TYPE [2P]
(#2) OF_COMMENT [3F]

^DMSQ("OF",D0,1) (#3) OF_EXT_EXPR [E1,245K]
^DMSQ("OF",D0,2) (#4) OF_EXT_EXEC [E1,245K] *for future use

1.5215 SQLI_TABLE ^DMSQ("T",D0,0) (#.01) T_NAME [1F] T_NAME(B)
(#1) T_SCHEMA [2P]
(#2) T_COMMENT [3F]
(#3) T_MASTER_TABLE [4P] T_MASTER_TABLE(E)
(#4) T_VERSION_FM [5N]
(#5) T_ROW_COUNT [6N]
(#6) T_FILE [7N] T_FILE(C)
(#7) T_UPDATE [8D]

^DMSQ("T",D0,1) (#8) T_GLOBAL [E1,245K] T_GLOBAL(D)

A-4 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

FILE# FILE NAME NODE FIELDS (KEYS IN BOXES) CROSS REFERENCES
1.5216 SQLI_TABLE_ELEMENT ^DMSQ("E",D0,0) (#.01) E_NAME [1F] E_NAME(B)

(#1) E_DOMAIN [2P] E_DOMAIN(C)
(#2) E_TABLE [3P] E_TABLE(D)
(#3) E_TYPE [4S] E_TYPE(E)
(#4) E_COMMENT [5F] E_TABLE,E_NAME(G)

E_TABLE,E_TYPE(F)
1.5217 SQLI_COLUMN ^DMSQ("C",D0,0) (#.01) C_TABLE_ELEMENT [1P] C_TABLE_ELEMENT(B)

(#2) C_WIDTH [2N]
(#3) C_SCALE [3N]
(#16) C_OUTPUT_FORMAT [4P] C_OUTPUT_FORMAT(E)
(#1) C_FILE [5N] C_FILE,C_FIELD(D)
(#4) C_FIELD [6N]
(#5) C_NOT_NULL [7S]
(#6) C_SECURE [8S]
(#7) C_VIRTUAL [9S]
(#8) C_PARENT [10P] C_PARENT(C)
(#10) C_PIECE [11N]
(#11) C_EXTRACT_FROM [12N]
(#12) C_EXTRACT_THRU [13N]

^DMSQ("C",D0,1) (#9) C_GLOBAL [E1,245K]
^DMSQ("C",D0,2) (#13) C_COMPUTE_EXEC [E1,245K]
^DMSQ("C",D0,3) (#14) C_FM_EXEC [E1,245K]
^DMSQ("C",D0,4) (#15) C_POINTER [E1,245K]

1.5218 SQLI_PRIMARY_KEY ^DMSQ("P",D0,0) (#.01) P_TBL_ELEMENT [1P] P_TBL_ELEMENT(B)
(#1) P_COLUMN [2P] P_COLUMN(D)
(#2) P_SEQUENCE [3N] P_TBL_ELEMENT,P_SEQUENCE(C)
(#3) P_START_AT [4F]
(#5) P_ROW_COUNT [5N]
(#7) P_KEY_FORMAT [6P]

^DMSQ("P",D0,1) (#4) P_END_IF [E1,245K]
^DMSQ("P",D0,2) (#6) P_PRESELECT [E1,245K] *for future use

1.5219 SQLI_FOREIGN_KEY ^DMSQ("F",D0,0) (#.01) F_TBL_ELEMENT [1P] F_TBL_ELEMENT(B)
(#1) F_PK_ELEMENT [2P]
(#2) F_CLM_ELEMENT [3P]

1.52191 SQLI_ERROR_TEXT ^DMSQ("ET",D0,0) (#.01) ERROR_TEXT [1F] ERROR_TEXT (B)
1.52192 SQLI_ERROR_LOG ^DMSQ("EX",D0,0) (#.01) FILEMAN_FILE [1N] FILEMAN_FILE(B)

(#1) FILEMAN_FIELD [2N]
(#2) ERROR [3P] ERROR(C)
(#3) ERROR_DATE [4D] ERROR_DATE(D)
(#4) FILEMAN_ERROR [5P] FILEMAN_ERROR(E)

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT Glossary-1

Glossary

Base Value - The stored value of a column in SQL, not transformed in any way.

Cardinality - The cardinality of a table is its number of rows; the cardinality of a
domain is the number of possible values in the domain.

Column - A set of values for a particular value sequence in a row, for each row in a
table (akin to a VA FileMan field). All values in a column must be of the same data
type or domain.

Data Type - A set of representable values. SQL has its own set of standard data
types; SQL vendors often implement additional data types.

Data Dictionary - is a file that defines a file’s structure, to include a file’s fields and
relationships to other files.

DBA - Database Administrator for an SQL system. The DBA has, by default, full
privileges to every object in the database.

DBS - Database Server. DBS is a non-interactive VA FileMan API. It makes no
writes to the screen. It provides client/server access to VA FileMan data. DBS calls
of particular interest to M-to-SQL vendors using SQLI include $$GET1^DIQ,
FIELD^DID, and $$EXTERNAL^DILFD.

DCL - Data Control Language. The set of SQL statements through which access to
the database is controlled.

DDL - Data Definition Language. The set of SQL statements through which objects
are created and modified in the database.

DML - Data Manipulation Language. The set of SQL statements through which
data is modified.

Domain - A set of permissible values. A domain is based on a data type, but may
contain further constraints on what values are valid for the domain.

Extract Storage - When the storage location for a particular VA FileMan field is
designated to be by position on a global node, instead of being character-delimited.

Field Type - The type of VA FileMan field. There are nine FileMan field types. VA
FileMan field types loosely correspond to the concept of data type.

Foreign Key - A foreign key acts as a ready-to-use join between two tables. It
matches a set of columns in one table to the primary key in another table.

Hierarchical Database - A database structure in which files can own or belong to
each other. Often referred to as a parent-child structure.

Ien - Internal entry number. This is the numeric subscript beneath a file’s global
root under which all of the data for a given VA FileMan file entry is stored.

Glossary

Glossary-2 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

Ien Column - A column SQLI projects to contain the ien of a VA FileMan entry.

Join - In SQL, a join is when two or more tables are combined into a single table
based on column values in an SQL SELECT statement.

M-to-SQL Product - Software that can view structured M globals as relational
tables through SQL.

Multiple-Valued Field - A VA FileMan filed that allows more than one value for a
single entry. See also Subfile.

ODBC - Open Database Connectivity. ODBC is Microsoft’s solution to enable client
access to heterogeneous databases.

Outer Join - A join between two tables, where rows from one table are present in
the joined table, even when there are no corresponding rows from the other table.

Output Formats - Output formats are provided by SQLI to convert column base
values into a format suitable for external use by end-users.

Primary Key - a designated set of columns in a table whose values uniquely identify
any row in the table.

Query - An SQL command that extracts information from an SQL database.

Relational Database - A database that is a collection of tables, and whose
operations follow the relational model.

Row - A sequence of values in a table, representing one logical record.

Schema - A schema defines a portion of an SQL database as being owned by a
particular user.

SQL - Structured Query Language, the predominant language and set of facilities
for working with relational data. The current ANSI (American National Standards
Institute) standard for SQL is X3.135-1992.

SQLI Mapper - Software written by an M-to-SQL vendor that maps the vendor’s
SQL data dictionaries directly to VA FileMan data, using the information projected
by SQLI.

Subfile - The data structure of a multiple-valued field. In many respects, a subfile
has the same characteristics as a file.

Table - A collection of rows, where each row is the equivalent of a record. A base
table (one not derived from another table) is the SQL equivalent of a database file.

Table Element - a column, primary key, or foreign key that is part of a table.

View - A user-defined subset of tables, based on a SELECT statement, that contains
only selected rows and columns.

.01 Field - A field that exists for every VA FileMan file, and that is used as the
primary lookup value for a record.

12/12/97 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT Index-1

Index

{B} placeholder2-1, 2-12, 3-4, 4-6, 4-8
{E} placeholder............................ 2-1
{I} placeholder..... 2-1, 2-12, 4-6, 4-7
{K} placeholder2-2, 2-4, 2-8, 2-9, 2-10,

3-7, 3-8, 4-7, 4-9, 4-13, 4-15
{V} placeholder...................2-2, 4-13
C_EXTRACT_FROM.......2-11, 4-12
C_EXTRACT_THRU2-11, 4-12
C_FM_EXEC......................3-3, 4-12
C_GLOBAL.............2-10, 2-11, 4-12
C_PIECE..........................2-11, 4-12
C_POINTER 4-12
C_VIRTUAL..............2-11, 3-3, 4-11
Cardinality

Domain 6-1
Columns (processing) 2-6
Computed fields........2-11, 3-3, 4-11
DA Return Codes file.................. 2-3
Data dictionary synchronization1-4
Data storage of entries 2-9
Date fields................................... 3-3
DBS callsv, 2-11, 3-3, 3-4, 4-11, 4-12,

4-18
Delete (SQL) 6-3
DM_BASE_EXEC2-12, 3-3, 4-5, 4-6
DM_BASE_EXPR.......2-12, 4-5, 4-6
DM_INT_EXEC .. 2-12, 3-3, 4-5, 4-6
DM_INT_EXPR2-12, 4-5
Domain cardinality..................... 6-1
Domain conversions 2-12
Entity - relationship diagram.... 1-3
Entry data storage...................... 2-9
Entry locations 2-10
Entry Points................................ 5-1
Field types (VA FileMan)........... 3-2
Foreign keys2-5, 2-13, 2-14, 3-4, 4-5,

4-16, 6-2
Free text fields............................ 3-3
Identifier naming algorithms 6-2
Ien column2-7, 3-3, 4-12
Indexes (VA FileMan) 3-7
Insert (SQL)................................ 6-3

Keywords4-3, 6-2
Keywords (populating) 1-4
Multiline computed fields 3-3
Multiple........................ See Subfiles
Mumps fields 3-3
Naming algorithms 6-2
Numeric fields 3-3
Output formats 2-12
P_END_IF................................... 2-9
P_SEQUENCE 2-10
P_START_AT.............................. 2-9
Placeholders................................ 2-1
Pointer fields2-11, 2-14, 3-4, 4-8, 4-16,

6-1
Populating keywords.................. 1-4
Primary keys2-2, 2-5, 2-7, 2-8, 2-9, 2-

7–2-9, 2-10, 2-14, 3-3, 3-8, 4-5, 4-7,
4-9, 4-14, 4-15, 4-16, 6-1, 6-2

Programming SAC...................... 1-5
Record data storage.................... 2-9
Record locations........................ 2-10
SAC (Programming) 1-5
Schemas2-4, 6-1
Set of codes fields3-4, 4-8, 6-1
SQLI_COLUMN file..........2-6, 4-11
SQLI_DATA_TYPE file 4-4
SQLI_DOMAIN file 4-5
SQLI_ERROR_LOG file 4-18
SQLI_ERROR_TEXT 4-17
SQLI_FOREIGN_KEY file....... 4-16
SQLI_KEY_FORMAT file 4-7
SQLI_KEY_WORD file........1-4, 4-3
SQLI_OUTPUT_FORMAT file .. 4-8
SQLI_PRIMARY_KEY file2-10, 4-14
SQLI_SCHEMA file2-4, 4-2
SQLI_TABLE file2-4, 4-9
SQLI_TABLE_ELEMENT file2-4, 4-10
Subfiles2-7, 2-8, 2-9, 2-10, 2-13, 2-14,

3-2, 3-5, 4-9, 4-13, 4-14, 4-16
Supported References................. 5-1
Synchronization.......................... 1-4
Table elements............................ 2-4

Index

Index-2 VA FileMan DI*21*38 SQLI Vendor Manual - DRAFT 12/12/97

Tables
Finding) 2-4
Processing) 2-4

Task Manager guidelines........... 1-5
Update (SQL).............................. 6-3
VA FileMan.................................... v

VA FileMan field types
Summary................................. 3-5

VA FileMan indexes 3-7
Variable pointer fields1-2, 2-11, 3-4
Word processing fields1-2, 2-14, 3-6, 4-

9

